Ir al contenido principal

IA de bajo costo: el nuevo desafío para las grandes empresas tecnológicas

Imagina un mundo donde el conocimiento humano no solo se almacena, sino que se modifica y refina en tiempo real. Un mundo en el que el acceso a la información deja de depender de motores de búsqueda y enciclopedias, y en su lugar, una inteligencia artificial capaz de dialogar y razonar se convierte en la fuente primaria de conocimiento. Este mundo ya no es una fantasía de ciencia ficción, es nuestra realidad gracias a los Modelos de Lenguaje de Gran Escala (LLM, por sus siglas en inglés).

Desde que OpenAI lanzó ChatGPT, la manera en que los humanos interactuamos con la tecnología ha cambiado de manera irreversible. Empresas como Meta, Google y Anthropic han seguido el mismo camino, desarrollando modelos cada vez más sofisticados y refinados. Pero el verdadero impacto de estos modelos no se limita a la eficiencia tecnológica: su relevancia se extiende a ámbitos económicos, académicos y sociales, generando oportunidades y desafíos sin precedentes.

En un mundo donde la hegemonía tecnológica parecía dominada por Estados Unidos, China ha demostrado que el conocimiento y la innovación pueden florecer en cualquier parte del mundo. DeepSeek R1, el modelo desarrollado en China, ha desafiado la narrativa de que solo las grandes corporaciones occidentales pueden liderar el campo de la inteligencia artificial. Este modelo, desarrollado con un presupuesto mínimo (6 millones de dólares para entrenarla) en comparación con los miles de millones invertidos por OpenAI, ha demostrado que la eficiencia en el desarrollo de LLMs no depende exclusivamente de los recursos financieros, sino también de la ingeniería y la optimización de procesos.

Según lo expuesto en el curso del Dr. Carlos Coello Coello en El Colegio Nacional, el desarrollo de DeepSeek R1 costó tan solo 6 millones de dólares, un presupuesto comparable al de una película mexicana de bajo costo. En contraste, el desarrollo de ChatGPT requirió inversiones superiores a los mil millones de dólares. Esta disparidad económica pone en entredicho la creencia de que la inteligencia artificial solo es accesible para corporaciones con grandes reservas de capital.

Este lanzamiento de DeepSeek R1 sacudió los mercados financieros. Nvidia, el gigante de los chips de inteligencia artificial, perdió 200 mil millones de dólares en un solo día tras la presentación de este modelo. Este impacto sugiere que la industria de la IA podría estar en un punto de inflexión, donde el acceso a modelos de inteligencia artificial ya no estará limitado a quienes pueden costear hardware de alta gama.

El desarrollo de LLMs con infraestructura menos costosa podría democratizar el acceso a estas tecnologías, permitiendo que startups y empresas de países en vías de desarrollo puedan competir en igualdad de condiciones con gigantes tecnológicos. La apertura de modelos como Llama y DeepSeek R1, en contraste con la opacidad de OpenAI, también ha generado un debate sobre el futuro de la inteligencia artificial: ¿debería ser un recurso abierto y accesible, o un activo controlado por pocas empresas.

Desafíos ambientales y sociales

Sin embargo, la revolución de los LLMs también trae consigo preocupaciones significativas. Uno de los aspectos más críticos es su impacto ambiental. Como lo señaló el Dr. Carlos Coello, el entrenamiento de estos modelos consume enormes cantidades de energía y agua. Cada consulta realizada a ChatGPT, por ejemplo, equivale al consumo de 500 mililitros de agua. A nivel global, el impacto ambiental de los LLMs es equiparable a cientos de vuelos transcontinentales, una realidad que podría convertirse en un obstáculo para la adopción masiva de esta tecnología en el futuro.

Desde una perspectiva social, la inteligencia artificial generativa plantea preguntas fundamentales sobre el futuro del empleo y la educación. La automatización de tareas intelectuales, antes reservadas para humanos, podría redefinir sectores enteros, desde la programación hasta la investigación académica. Mientras que algunos ven en esto una oportunidad para aumentar la eficiencia y productividad, otros advierten sobre el riesgo de la obsolescencia laboral en profesiones que antes se consideraban seguras y también en la reducción masiva de la capacidad y del capital intelectual, al delegar en la IA los procesos mentales asociados a la creatividad y el razonamiento.

Conclusiones

Los Modelos de Lenguaje de Gran Escala representan uno de los avances más significativos de la inteligencia artificial moderna. Su impacto trasciende lo méramente técnico: están redefiniendo industrias, reconfigurando la economía global y generando debates cruciales sobre el futuro de la humanidad. Modelos como DeepSeek R1 han demostrado que la innovación no está restringida a Silicon Valley y que el desarrollo de IA puede adoptar enfoques más eficientes y accesibles.

Sin embargo, a medida que avanzamos hacia un mundo donde los LLMs serán parte integral de nuestra vida cotidiana, es fundamental considerar los desafíos que plantean. La regulación, la sostenibilidad y la equidad en el acceso serán temas clave en los próximos años. La inteligencia artificial generativa ha abierto una nueva era, pero la forma en que la sociedad decida integrarla y gobernarla determinará si esta revolución será realmente para el beneficio de todos.

Referencias:

  • https://www.youtube.com/watch?v=Xk33QyjSIl0
  • https://www.cronica.com.mx/academia/2025/02/25/por-que-la-china-deepseek-sacudio-el-panorama-de-la-inteligencia-artificial/?fbclid=IwY2xjawItoBlleHRuA2FlbQIxMQABHYyFAbIVKRIqtEQUCbyxPh6IldwS2GkqCpnq9gWjdgu7B7if-qKr1J_pcw_aem_qnGOtuLWr_evEQwgtBZ0Ig&sfnsn=scwspwa
  • https://simplywall.st/es/stocks/us/semiconductors/nasdaq-intc/intel/news/intel-corporation-nasdaqintc-frenada-por-un-crecimiento-insu
  • Menache, I., Pathuri, J., Simchi-Levi, D., & Linton, T. (2025). How generative AI improves supply chain management. Harvard Business Review. Recuperado de https://hbsp.harvard.edu/
  • Mudassir, H., Munir, K., Ansari, S., & Zahra, A. (2024). AI can (mostly) outperform human CEOs. Harvard Business Review. Recuperado de https://hbsp.harvard.edu/
  • Mollick, E. (2024). Reinventing the organization for GenAI and LLMs. Harvard Business Review. Recuperado de https://hbsp.harvard.edu/
  • Choudhury, P. R., Balasubramanian, N., & Xu, M. (2025). Why DeepSeek shouldn't have been a surprise. Harvard Business Review. Recuperado de https://hbsp.harvard.edu/
  • Ramakrishnan, R. (2024). A practical guide to gaining value from LLMs. MIT Sloan Management Review. Recuperado de https://hbsp.harvard.edu/


Comentarios

Entradas populares de este blog

Un binomio para el éxito corporativo: Formulación de problemas + IA Generativa.

En tiempos de la IA generativa, hacer las preguntas correctas no es suficiente para tener soluciones efectivas a un problema que aún no se comprende. Con el aumento de la inteligencia artificial generativa y su uso democrático, se destaca el surgimiento del “Prompt Engineering”, catalogado por el Foro Económico Mundial y el CEO de OpenAI, Sam Altman, como una habilidad crítica y altamente influyente. Este campo implica la optimización de entradas de texto para interactuar eficazmente con modelos de lenguaje avanzados, mostrando un cambio significativo en cómo interactuamos con las máquinas mediante el lenguaje natural, en contraste con métodos anteriores más restrictivos y técnicos. Jaime Teevan, científico jefe de Microsoft, expresa un optimismo creciente sobre el potencial de la IA para transformar radicalmente la productividad laboral. Sin embargo, Oguz Acar en su artículo para HBR argumenta que, a pesar de su prominencia, el prompt engineering podría ser una habilidad efímera d...

La automatización cognitiva en los negocios.

En este artículo, profundizamos en un nivel más avanzado de automatización: “ La automatización cognitiva” . Esta tecnología está ganando impulso gracias a la creciente accesibilidad y aplicación de la inteligencia artificial, particularmente mediante técnicas avanzadas de deep learning y machine learning. Además, la evolución de tecnologías exponenciales que discutimos anteriormente en el pasado post de este blog, cómo el Internet de las Cosas (IoT), la computación en la nube, el big data y la red 5G, están catalizando la expansión, el fortalecimiento y la mejora de la automatización cognitiva. El ingrediente clave para este avance es la abundancia de datos, que actúan como la materia prima esencial para estas tecnologías. Con este panorama, exploraremos cómo la automatización cognitiva está redefiniendo los negocios y la tecnología, abriendo nuevas posibilidades y desafíos en el panorama empresarial actual. Sobre la tecnología. La automatización cognitiva se refiere a una tecnolo...

NVIDIA en el centro del tablero de la IA generativa.

Después de un despegue con un gran ruido mediático de ChatGPT y de la IA generativa, hoy se presenta un mar en calma y se respira tranquilidad en el ambiente, o al menos eso pudieran pensar mucho usuarios, enfocándose a seguir obteniendo provecho de las herramientas tecnológicas de IA generativa, para diversos fines, ya sea para generar texto, código, imágenes y hasta video. Sin embargo y no tan tras bambalinas, el mundo de la Inteligencia Artificial (IA) está inmerso en una inédita batalla industrial. Gigantes tecnológicos como Microsoft y Google se encuentran en una intensa competencia, no solo en sus dominios tradicionales, sino también por conquistar emergentes mercados. En este contexto, fuertes participantes del ecosistema movilizan sus vastos recursos para desarrollar cerebros artificiales más avanzados y potentes. Además, nuevos contendientes se integran en la arena con el objetivo de asegurarse un lugar en esta revolución industrial. Escuchaba hace algunos días a un expone...